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A NEGATIVE-NORM LEAST SQUARES METHOD 
FOR REISSNER-MINDLIN PLATES 

JAMES H. BRAMBLE AND TONG SUN 

ABSTRACT. In this paper a least squares method, using the minus one norm 
developed by Bramble, Lazarov, and Pasciak, is introduced to approximate 
the solution of the Reissner-Mindlin plate problem with small parameter t, 
the thickness of the plate. The reformulation of Brezzi and Fortin is employed 
to prevent locking. Taking advantage of the least squares approach, we use 
only continuous finite elements for all the unknowns. In particular, we may 
use continuous linear finite elements. The difficulty of satisfying the inf-sup 
condition is overcome by the introduction of a stabilization term into the least 
squares bilinear form, which is very cheap computationally. It is proved that 
the error of the discrete solution is optimal with respect to regularity and 
uniform with respect to the parameter t. Apart from the simplicity of the 
elements, the stability theorem gives a natural block diagonal preconditioner 
of the resulting least squares system. For each diagonal block, one only needs 
a preconditioner for a second order elliptic problem. 

1. INTRODUCTION 

The numerical solution of the Reissner-Mindlin plate model has been discussed 
by many authors. Many schemes developed early on, using standard finite element 
methods, are known to possess a locking problem for very thin plates. Using a 
Helmholtz decomposition, Brezzi and Fortin [11] derived a reformulation of the 
Reissner-Mindlin plate model, which fundamentally removed the reason for the 
locking. Another advantage of this reformulation is that the four unknowns are 
decoupled into two elliptic problems and one mixed saddle point problem. Brezzi 
and Fortin gave a scheme based on this for which they proved error estimates 
independent of the plate thickness t for transversal displacement, rotations and 
shear stresses. The main part of the reformulation is a problem similar to the 
Stokes problem, so there are some disadvantages when discretizing it directly. First, 
a discrete saddle point problem has to be solved. Second, the bubble function 
subspace, B3, is used in addition to the linear finite elements, because one cannot 
independently choose finite element subspaces; the discrete "inf-sup" condition has 
to be satisfied. Finally, the preconditioning of the resulting system is not simple. 
Brenner [9] developed a multigrid W-cycle iteration, and proved that when the 
number of smoothings is large enough, the convergence rate of the iteration does 
not depend on t or h, the mesh size. How many smoothings are required is not 
clear. 
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A number of authors tried to develop locking-free schemes which involve only the 
primitive variables. (Arnold and Falk [1], Duran and Liberman [13], Onate, Zarate 
and Flores [15], Brezzi, Fortin and Stenberg [12], ....) Each of them used the same 
framework, a pair of subspaces and a reduction operator [2]. The key point of the 
analysis is to make the discrete system of the two primitive unknowns equivalent 
to a discretization of the Brezzi-Fortin reformulation, so that it can be locking free. 
The choice of the subspace of the rotation is implicitly restricted by the stability 
condition on the mixed saddle point problem of the Brezzi-Fortin reformulation. 
The choice of the reduction operator and the subspace of the displacement is re- 
stricted by the discrete Helmholtz decomposition, so that the extra unknowns can 
be eliminated. Therefore the pair of spaces has to be rather complicated. The 
simplest pair of subspaces is the one given by Onate, Zarate and Flores [15], but 
Arnold and Falk [2] showed that this method does not converge in the classical 
sense. Although it is ideal to be able to work on the primitive variables only, as far 
as computing time is concerned working on the two extra unknowns of the Brezzi- 
Fortin reformulation does not cost more. In fact, the two elliptic problems can be 
solved relatively in little time; the solution technique of the Stokes-like problem is 
also well known. 

The other approach is a stabilization method (e.g., [12]). The major measures 
taken to prevent locking in this approach are the following: (a) A projector which 
brings the discrete rotation function and the gradient of the displacement function 
into the same subspace, and (b) the replacement of t-2 by (t2 + oah2)-1, which 
is, in a certain sense, equivalent to approximating a thin plate by a thicker plate 
but keeping the error introduced by this within the magnitude of the discretization 
error. This approach does produce simpler schemes. 

Later, Hughes and Franca [14] and Stenberg [18] developed stabilized mixed 
formulations which are consistant to the PDE. Therefore they can use balanced 
elements designed only for interpolation properties. In [18], Stenberg proposed a 
scheme which is simpler than the one in [14]. The shear stress is removed from both 
the formulation and the analysis. One possible disadvantage of this approach is that 
a high regularity assumption on the transversal displacement is needed. But for a 
plate with partially clamped-partially free boundary conditions, the displacement 
function may not even be in H2 because of the corners of the domain. Besides, the 
multigrid preconditioners directly based on the formulation of these methods are 
complicated (cf. [16]), if compared to the diagonal preconditioners. 

Arnold, Falk and Winther [4] worked on the preconditioning of these types of 
schemes. They reported that until now, no attempt to precondition the primitive 
variable discretizations has been successful. The small parameter t also creates 
trouble for preconditioning. It appears that even though one can discretize the 
Reissner-Mindlin plate model with the primitive unknowns only, a locking-free re- 
formulation has to be used for preconditioning, and so additional unknowns have 
to be used. The paper [41 used a different locking-free reformulation with the shear 
stress as the new unknown and set up a framework for diagonal preconditioning of 
the discretization methods described in the paragraphs above. This reformulation 
also has five scalar unknowns in a saddle point system, but not decoupled. Two of 
the diagonal blocks of the preconditioner use standard elliptic problem precondi- 
tioners. The other one is a preconditioner for I-t2graddiv, which they call H(div) 
preconditioning. The method given in [3] and [4] is restricted to the case in which 
the pair of subspaces are such that the discrete Helmholtz decomposition holds. 
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In this paper, we develop a least squares discretization based on the reformulation 
of Brezzi and Fortin. A discrete version of 11 * 11-1 norm [6], [7] is employed for 
the least squares method to weight the system correctly. The major advantage 
of least squares methods is that one does not have to satisfy the discrete "inf- 
sup" condition and can choose the subspaces for different variables independently. 
Therefore, continuous elements (e.g., linear finite elements) may be used here for 
all the unknowns. The error estimates are optimal with respect to regularity and 
are uniform in t. Instead of leading to a saddle point problem, the resulting least 
squares system is symmetric and positive definite. The stability theorem of the 
least squares form provides a natural way to precondition the system diagonally. 
For each block, one only needs to have a preconditioner for a second order elliptic 
problem, a task which is well understood. 

The rest of the paper is organized as follows. Section 2 describes the Reissner- 
Mindlin plate model and the reformulation of Fortin and Brezzi. Section 3 gives the 
least squares discretization. A stability result on the least squares form is proved 
in Section 4. The error estimate under full regularity is proved in Section 5. Im- 
plementation and numerical calculations are discussed and presented in Sections 6 
and 7. 

2. REISSNER-MINDLIN PLATE MODEL AND ITS REFORMULATIONS 

We introduce now some notation for some standard function spaces. Let L2 (Q) 
be the square integrable functions on a domain Q C R2. L2(Q) = L2(Q) x L2(Q). 
The space L2(Q) is the space of L2 functions with mean value zero; i.e., p E L2(Q) 
implies that fQ P = 0. Let H1 (Q) be the usual Sobolev space of functions whose first 
derivatives are square integrable. The subspace Ho' (Q) consists of those functions 
u E H1(Q) such that u = 0 on OQ. H1(Q) denotes the space of H1 functions, p, 
with fQp 0. Ho(Q) = Ho(Q) x Ho(Q). H-1(Q) is the dual space of Ho(Q) with 
respect of L2(Q). H-1(Q) is the dual space of Ho(Q) with respect of L2(Q). The 
Reissner-Mindlin model of a thin plate with clamped boundary and thickness t is 
given as the solution of the following problem. 

Find (w, ?) c Ho (Q) x Ho(Q) such that 

(2.1) a(? Ib) + At-2(?>- , V b - V,a) = (g, ,u), V(Iu, b) E Ho (Q) x Ho(Q) 

here (-,.) denotes the L2 inner product, and 

E____ ___ a 02 )~b1 V01 002 ) O'P2 

12(1- a2)~ ay~ Ox ?(v ayxa+ 
1I' Oq$i 0$2 &Ilb 1 __1b + ~~~~ )( O'+b)]dxdy 2 (y + ax ay axd 

The constants and variables are: 
?b: rotation of vertical fiber; 
w: transversal displacement; 
g: transversal loading; 
E: Young's modulus; 
v: Poisson's ratio; 

2(A?- ) for 0 < k < 1. 
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By Korn's inequality, there exist constants Ci > Co > 0, such that for any 
XqEcHo(Q)) 

Coa(b, db) < T01i'01) + (V'2,V'2) < Cla(, b). 

Brezzi and Fortin reformulated the Reissner-Mindlin plate problem [11] to avoid 
the locking phenomenon. By Helmholtz' Theorem, there exist (r,p) E Ho (Q) x 
Hi(Q) such that 

(2.2) At-2(Vw -_ ) = Vr + curl p. 

Here curlp = (0L, -aP). Using (2.2), one can easily show that (2.1) is equivalent 
to the following problem. 

Find (r,0,p,w) c Ho(Q) x H'o(Q) x H1(Q) x Ho(Q), such that 

(2.3) (Vr,VA) = (g,,), VA E Ho'()) 

(2.4) a(o,z/) - (curlp,z/) = (Vr, ), V (Q) 

(2.5) -(X) curl q) -t2(curl p, curl q) = 0, Vq c Hi(Q), 

(2.6) (Vw, Vs) = ( + t2Vr, Vs), Vs E Ho(Q). 

If not otherwise mentioned, we assume that Q is a convex polygonal domain. 
Under this assumption, Arnold and Falk [1] proved the following a priori estimates 
and regularity results: 

(2.7) || r Il1 + || ? 112 + || P Ill + t || P 112 + || Ill< C || 9 ||-1, 

and 

(2.8) H| r 112 + H| W 112 < C 11 9 Hlo, if g C L2(Q). 

A slight modification of the proof in [1] leads to the following improved estimate 
for w: 

(2.9) 1H w 112 < C(Il g HI-i + t2 11H g o). 

It is obvious that (2.3) is an independent Dirichlet problem. Once (2.4) and (2.5) 
are solved for 0 and p, (2.6) is also easy. The problem is thus reduced to solving 
the system of (2.4) and (2.5). 

For the purpose of approximating the solution of this system we reformulate it 
as follows. Let xl = (x2, -Xi) for x C L2(Q). Then 

curlp = Vp'. 

We introduce new variables f, u and v by f' = Vr, u1 = q, and v' = 'b. Then 
(2.4) and (2.5) can be rewritten as follows: Find (p, u) H' (Q) x H'o(Q), such that 

(2.10) a(u,v) - (Vp,v) = (f,v), Vv CH(Q)) 

(2.11) (V. u, q) -t2(Vp,Vq) = 0, Vq CH (Q) 
where a (u, v) = a 

By examining the proof of (2.7) in [1], we have the following estimate: 

(2.12) 11 U 112 + 11 p Ill + t 11 p 112 < C 11 f 11' Q1 u 112 + 1l P 1il), 

for f C L2(Q). 
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Define 

A: Ho(Q)-* H-1(Q), (Au,v) = a(u,v), Vv EH(Q)) 

and 

A : H1(Q) - (Hl(Q))*, (Ap, q) = -(Vp,Vq), Vq E H (Q) 
The formal version of (2.10) and (2.11) is the following: 

(2.13) Au - Vp = f, in Q, 

(2.14) V * u + t2Ap = o, in Q, 

f, Op (2.15) u=0, -= 0, on OQ. 
On 

3. A LEAST SQUARES DISCRETIZATION 

In this section we consider a least squares method solving (2.10) and (2.11). 
Assume that Q is quasi-uniformly triangulated. The parameter h is the diameter 
of the largest of the triangles. Let Vh C Hoj(Q) and Ilh C H1 (Q) be the subspaces 
consisting of continuous piecewise polynomials of degree m - 1, with m > 2, and 
let Vh = Vh x Vh c Ho(Q). One can choose to use different orders of polynomials 
for Vh and Hh. In our numerical computations we use the continuous linear finite 
elements and hence m = 2. 

First we need to define some discrete operator-: 

(3.1) Ah Ho(Q) - Vh, (Ahu,v) = &(u,v), Vv E Vh. 

(3.2) Vh L2 (Q) Vh, (Vhp,v)--(pV*v), VvEVh. 

(3.3) Ah H1(Q) Ih, (hP,q) = -(Vp,Vq), Vq E Hh- 

(3.4) Vh- Ho (Q) - H,h, (Vh- U, q) = -(u, Vq), VqE rlh- 

Define the discrete norm of order minus one, for v E H-1(Q), by 

(3.5) V 11H-1,h= SUP (VI,w) 
WEVh 11 Wi 

It is easy to prove the following lemma [6]. 

Lemma 3.1. For any v E Vh, 

(3.6) || v H1,h= (ThV,V), 

where Th: H-1(Q) - Vh is defined by (VThz, Vx) = (Z, X), VX E Vh. Therefore, 
if (, )-l,h is the inner product induced by 11 -1,h, then 

(V,W)-l,h = (ThV,w), Vv,w c Vh- 

Let Bh : H-1(Q) - Vh be an easily computable and spectrally equivalent 
preconditioner for Th. That is, 

(3-7) CO(Thv,v) < (BhV,V) < C0(Thv,v), VV c Vh, 

for some positive constants C0o < C, independent of h. There is an extensive 
literature concerning the theory and techniques for building such preconditioners, 
cf. [5], [10]. 
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Our least squares method will be based on the following bilinear form on H1 (Q) x 

H' (Q): 

(((p, u), (q, v))) = (Bh(Ahu-Vhp), AhV-Vhq) 

(3.8) + h2(Au-Vp,Av-Vq)h 

+ Y(Vh U+t2 Ah P, Vh. V + t 2Ah q)M. 

Here -y is a parameter to be adjusted for balancing and preconditioning the form 
and (-, -)M is an inner product, equivalent to the L2 inner product on ITIh with 
constants independent of h, chosen to avoid computing the inverse of the mass 
matrix. The details will be discussed when we describe the implementation. Set 
(U, V)h -e'rh fe U * V, the elementwise inner product. When u and v are in 
L2(Q), (u,v)h = (u,v). 

The least squares problem is the following: Find (P, U) c HIh X Vh, such that 

(3.9) (((PI U), (Q, V))) = (Bhf, AhV - VhQ) + h2 (f, AV - VQ)h, 

for all (Q,V) C ITh X Vh- 

4. STABILITY 

First we prove a stability result on the least squares bilinear form (3.8). For the 
rest of the paper, C will stand for a constant independent of both h or t which may 
take on different values at different occurrences. 

Theorem 4.1. For any (P, U) C -Hh X Vh, 

|U |+ || P + t |P ? 1 + t2 || AhP || 

< C{ AhU-VhP I,h + h || AU-VP IIh? lI Vh * U + t2 AhP } 

< M((PI U) I (PI U)))2 

< C(|| U 1Hi + || P || + t || P H1i + t2 H AhP 11), 

where h= (Ih -)h 

Proof. We prove the first inequality; the second and third are obvious. It is well 
known that for all p c L2(Q), 

(4.1) p? sp (p,V.-v) 
(4.1) ~~~~~~vEH'(Q) VI 

This result may be found in Girault and Raviart [17]. Fix P C 11h, v c H' (Q). Let 
w c Vh satisfy 

h 11 w + 11 v-w || < Ch v 1. 

Then 

(P,V v) (P,V (v-w))+(P,V w) 
< (VP, v-W) I + I (VhP,W) 

and 

(VP,v - w) < VP 1H11 V - w 11 < Ch 11 VP llhll V Ill, 

(VhP,w)? < |VhP 11-1,hi| W Il <? C || VhP 1_-1,hll V Il 
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Hence 

|| P || < C(Ij VhP |1-1,h + h || VP Ilh)- 

< C( AhU-VhP 11-1,h + h || AU-VP Ilh + || U 11i). 

Here we have used the inverse property h || U lk? C || U Ilk-1 for U C Vh. 
For U c Vh, according to Korn's inequality, 

C 11 U 112 < (U,U) = (AhU,U) 

= (AhU - VhP, U) + (VhP, U) 

= (AhU-VhP, U) - (P, Vh U) 

= (AhU-VhP, U) - (P,Vh* U + t2 Ah P) + t 2(P, hP). 

Thus 

C 11 U 1121 + t2 11 p12 

<II AhU-VhP ||-1,hll U Il1 + || P ||| Vh* U + t2 Ah P 

Combining the last inequality and the estimate for IIPII above, using the Schwarz 
inequality and some simple manipulations, we get 

U PI?l+1P1+t 1P Ill 

< C{ AhU-VhP 11-1,h +h || AU-VP ||h + ?| Vh * U + t2 AhP } 

Now it is easy to see that the first inequality of the theorem holds and the theorem 
is proved. D 

This first theorem implies that the least squares form (3.8) is positive definite 
and hence the least squares problem (3.9) has a unique solution. 

5. ERROR ESTIMATES 

Theorem 5.1. Let (p, u) be the solution of (2.10) and (2.11), and (P, U) be 
the solution of (3.9). Assume that f E L2(Q), (p,u) e (Hm(Q) n Hi(Q)) x 
(Hm(Q) nq H'(Q)), and that Vh and Hh consist of continuous piecewise polyno- 
mials of degree m - 1, mn > 2. Then 

H u - U HI + 1 p - P H + t p - P Hi < Chm-i(1I U Him + H p Him-i + t 1H p HIm) 

In particular, for mn = 2, 

u-U + 1H p-P + t 1H p-Pi < ChHf H 

Proof. Now 

(5.1) a(u, v) - (Vp, v) (f, v), Vv eH(Q) 

so that 

(5.2) (AhU - VhP, V) (f, V), VV E Vh. 

By (5.1) and density, 

(5.3) (Au-Vp, v) = (f, v), Vv E L2 (Q). 
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Moreover, for any Q E Hh C Hi(Q), 

(Vh * U + t2 Ah p, Q) -(u, VQ) - t2 (Vp, VQ) =(V . u, Q) - t2 (Vp, VQ) 0, 

and therefore 

(5.4) Vh - U + t2 AhP = 0- 

It. follows from (3.9), (5.2), (5.3) and (5.4) that 

(5.5) (((e, E), (Q, V))) =0 V(Q, V) e Ih X Vh, 

where e = -P and E = u-U. Define P E Hh by 

(5.6) (VP, VQ) = (Vp, VQ), VQ E nh 

Now P is the Hi (Q) projection of p into Hh. Thus, since for some P E nh, 

(5.7) H P-P 11H ? Ohl- P H, 1 K< m 
we have 

(5.8) HP-P Hi ? HP-P 11H < Chl-i 1P 1 < m. 

Moreover, by the standard duality argument (Aubin-Nitsche trick), we have 

(5.9) 1H p - Chm-? 1 p Hrn-i 
Choose U E Vh such that 

(5.10) H -U 11 + h H U-U HiK Chm 11 U Hlm, 

and let 

(e, E) =(P- PI U -U). 

By the stability theorem and (5.5) we have that, 

H E Hi1 + H1 H + t H1 e Hi ? O(((e, E), (e, E)))i/2 
- C Pp, U-u), (e, E)))i/2 

Hence, 

HE 11 + 11 11 + t e i111 ? (((e, E) (e, E)))1/2 

< C((pI U-u), (PI-p U- )))1/2 

< CO {| Ah(U- U) -Vh(P -p) ||-1,h 

+ h 11 A(U-u)-V(P-p) ||h 

+ || Vh (U-U) + t2 Ah (P-p) } 
But 

H Ah(U - u) H1-1,h <? CH U- u H ?< Ohmi U Im 

HVh(P-p) H|-i,h < HP-P || O hm1 1| p HIm-i 

h 1H V(P-p) ||h < h 1 P-p H1i < Chm-i 1H p Hlm-i 

In [7], it is shown that 

h 11 A(U - u) ||h < Chm-i 11 U llm - 

For m = 2, the inequality above is trivial. Because of the definition of P, 

AhP = Ahp, 
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and thus we have 

|Vh (U-U) + t2 Ah (P-p) 11 

= H| Vh* (U - U) H < C H U - u I,< Ch 1 U Hm- 
Therefore, 

(5.11) H E 11 + H e + t 1 e H1 < Chm-i( U lm + 11 P Hn-i) 

By (5.10), (5.8), (5.9), (5.11), and the triangle inequality, 

11 E 11H + 11 e 11 + t 11 e i Chm-1(H U im + 11 P rnm-i + t 11 p im). 

This proves the theorem. O 

Next we give an error estimate theorem for the solution of the complete system. 

Theorem 5.2. Let (r, , p, w) E Ho (Q) x Ho (Q) x Hi (Q) x Ho (Q) be the solutio'n of 
system (2.3), (2.4), (2.5) and (2.6). (rh,4Oh,Ph,Wh) E Vh X VhX Hh XVh, Uh O 4h, 

and f1hi Vrh, such that 

(5.12) (Vrh, VAt) = (9, ,), 

(5.13) (((Ph, Uh), (Q, V))) = (Bhfh, AhV - VhQ) + h2 (fh, AV - VQ)h, 

(5.14) (Vwh, Vs) = (h + t Vrh, Vs), 

for all ueVh, (Q V) E h X Vh and s E Vh. Then 

11Hr-rh HIl < ChH|H 11, 

1r-rh || + || U-Uh ll + || P-Ph || + t |P p-Ph ll < Ch || g ||-1, 

11 W - Wh HIl < Ch(HI g 11-1 + t2 11 g) 

Proof. The first estimate for r - rh is standard. By the duality argument we also 
have 

1r-rh H| < Ch || gH- 
Let (iu,p) be the solution of (2.10) and (2.11) with f replaced by fh. Then, 

(5.15) .(u-ii,v) - (V(p-),v) = (f-fh,v), Vv H 

(5.16) (V. (u- ui),q) -t2(V(p-p),Vq)= 0, Vq E H(Q). 

Let v = u - ui and q = p - p in the two equations. Adding them together we have, 

a(U-ii,U-i) +t2(V(p- ),V(p- ))=(f-fh,U-ii), 

from which it follows that, 

|| u-ui Il + t IIP-P Ill _< C 11 f-fh ||-1 - 

In order to bound the L2 norm of p - we use (4.1). Thus 

Hp-H ?C sup (V (p ~)v) 
vEH'(Q) | V 

C sup (f-fh, v)-(u-ii, v) 
vEH (Q) V |i 

? C(|| f-fh ||-1 + | u-u 1). 
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But 

(5.17) H f-fh 11-1 H| V(r-rh) H1-1 <H | r-rh H| < Ch 1H g 11- 
Hence 

(5.18) lu- H+ Hp11-H + t 1? p -p l < C 1H f - fh 11-1 < Ch 1 g 1H-i 
By the previous theorem, 

(5.19) 11 Uh-u lHI + || Ph-p || + t || Ph-p |Il < Ch || fh || < Ch || g 1-1- 
Now (5.18) and (5.19) imply that 

(5.20) || Uh-u UIl + || Ph-p || + t H| Ph-p HIl < Ch || g ||-1, 
which completes the proof of the next to last inequality of the theorem. 

Finally, we need to prove the estimate for w - Wh. Let C be the solution of 

(5.21) (VC, Vs) = (h + t2Vr, Vs), VsE Ho (Q) 

Theni E H2(Q) and 

(5.22) w l-w < 11 ? -h 11 < Ch 11g 11-1 
Let 0 = w-t2r, Oh Wh - t2rh, then 0 and Oh are solutions of the problems 

(VO, Vs) = (h, Vs), VS E Ho (Q) 

and 

(VOh, V&=h)(Oh, VS) VS E Vh, 

respectively. (Here we used the fact that both rh and Wh are in the same subspace 
Vh.) It is standard that 

H -Oh HIl < Ch || V Oh H| < Ch || g 11-1, 

and 

(5.23) D w-Wh Il < ?| 0-Oh 11 +t |r-rh ll < Ch(|g |-i + tg H H). 
The proof is completed by combining (5.22) and (5.23). LII 

If we replace fjh = Vrh by ffh = Vhrh in this theorem, the theorem holds. In 
fact, the only thing that needs to be verified is (5.17) and (5.19). We observe that 

ff-fh 1-1 = || Vr-Vhrh ||-1 

< C sup (Vr-Vhrh,v) 
vcHl(Q) V Hi 

C sup (Vr-Vhrh, v-Vh) + (Vr-Vhrh, vh) 

vcHl(Q) V 

? C(HI r 1 h + H| r-rh 1H) 
? Ch || g 

Here Vh E Vh is chosen to satisfy 

h H| vh Ill + || v-vh || < Ch || v Hi 
It is obvious that || Vhrh I?<|| Vrh I?<-I Vr || 

Although this replacement seems unnecessary and computationally uneconomi- 
cal, it might be needed to prove an error estimate under weaker regularity assump- 
tions. 
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6. IMPLEMENTATION 

First we set up some terminology. A partial differential equation can be described 
as 

Lw = Z, 

where w E HE is the solution, HE is a Sobolev space, z E F is the right hand side, 
FCHE) HE is the dual space of HE with respect to L2 and L: HE -+ F is the 
differential operator. 

A conforming finite element subspace Wh is a finite dimensional subspace of 
HE. Let {1, ... ,I m} be a basis of Wh. If a function w E Wh is an approximate 
solution, a correction to be added to an approximate solution, or a test function in 
a weak formulation, we usually compute its coefficient vector wc = (aj) under the 
basis {(p1, , pom}, defined by w jL1 co3i. For a function z in Wh or F, which 
is the right hand side, a residual, or an image of L, we usually need to compute its 
dual vector Zd (p3), with O3 = (ri, z). In the weak formulation 

(Lw,v) = (z,v), Vv E HE, 

where Lw and z are in the dual space of HE. So, it is only natural to consider their 
dual vectors. Although the L2 projections of Lw and z into Wh are in Wh, they 
still represent functionals on Wh, not functions in Wh. And it still does not make 
sense to consider their coefficient vectors under a basis. 

It is well known that, as a matrix action, a preconditioner takes a dual vector 
and produces a coefficient vector. 

1. The computation of the bilinear form 

(Bh(AhU - VhP), AhV.- VhQ) 

has been discussed in [7]. For the convenience of the readers, we include a discussion 
about it here. Let {(,... ,n} be a basis of Vh, and {fq1, .. ,qjk} be a basis of 
Ih D R. For U, V E Vh and P, QE I h 33 R, Uc, V, and PC, Q, are the coefficient 
vectors of U, V and P, Q, respectively. To compute (Bh(AhU-VhP), AhV-VhQ), 
first we need to compute the entries of the the dual vector of AhU - VhP: 

(ii, AhU - VhP) = U) + (V * ?, P) = (KUc)i + (SPc)i, 

where K-(a(ti, (,)) is the stiffness matrix, S = ((V (i, r7i)). 

Let wc be the coefficient vector of w = Bh(AhU - VhP), then wc - 

B1(KUC + SPC), where B1 is the matrix corresponding to Bh. Now it is easy 
to see that 

(Bh(AhU - VhP), AhV - VhQ) 

= a(w, V) + (V wI Q) 

= a(V, w) + (Q, V * W) 

= VT Kwc + QTSTWc 

= (VCTK + QTS )B1(KUC + SPc) 
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The matrix Al ( K ) B1 ( K S ) is usually a full matrix, which is not 

easily assembled. But its action on a coefficient vector of the form ( c) is 

clearly computable. 

2. Now we consider the computation of 

(Vh * U + t Ah P, Vh * V + t Ah Q)M- 

The inner product (-,-)M is defined as follows. 
Suppose that R E IIh is given in the form of Vh * U or AhP. Then it is only 

convenient to compute its dual vector. To get the coefficient vector, one has to 
multiply the dual vector by the inverse of the mass matrix M = ((O, ij)). 

Let Uc, Vc and PC, QC be the coefficient vectors of U, V E Vh and P, Q E Hh, 

respectively, as above. It is clear that the dual vector of Vh * U + t2 Ah P iS given 
by 

(i, Vh U + t Ah P) = (STUC), 

where S is as defined before, Kp = ((V4i, Vi)). Similarly, the dual vector of 
Vh * V + t2 Ah Q is given by 

(i, Vh * V + t Ah Q) (STV -t2KpQC). 

If we want to compute the L2 inner product 

(Vh . U + t Ah P, Vh . V + t2 Ah Q) 

- (STUc - KpPC)TM1 (STVC KpQc)- 

at some point we have to use M"1, which is not a pleasant thing to do. But M-1 
is spectrally equivalent to h-21, i.e., 

Ch 2xTx < xTM1 X < Ch 2XTX 

for any X E Rk. Therefore, we define the new inner product ( m, ) on (Hh 3 R) x 
(Hh E R) by 

(R, R)M = h-2R[TRd 

It is easy to see that 

(6.1) C(R, R) < (R, R)M < C(R, R) 

Now 

1(Vh . U + t Ah P,Vh . V + t Ah Q)M 

-2(STUC - t2KpPC)T(STVC-t KPQ) 

is easily computable. Because of (6.1), in the proof of the theorems, we can switch 
between (-, ) and (, -)M any time we want to. The matrix corresponding to the 
right hand side of the last equality is 

iA2 = -ah-2 ( _2 )(ST -t2Kp). 

For the other term in the least squares bilinear form (3.8), h2 (AU - VP, AV - VQ), 
if linear elements are used, the matrix is 

A3 = h2 ( g 
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Therefore the matrix corresponding to the form (3.8) is 

A = A, + A2+ A3. 

3. Next we consider the preconditioning of the least squares bilinear form (3.8). 
Recall the stability theorem: For any (U, P) E Vh X Hh, 

11 U 112 + 11 p 112 + t2 11 p 112 + t4 A 1P 2 (((P, U), (P, U))), 

where means that the two sides are spectrally equivalent. This tells us that the 
system can be preconditioned diagonally. We already have a preconditioner of the 
form 

D(U,U) U 1, 

namely Bh, which is used in the least squares formulation. For the other component, 
Pi 

C(H1 p 112 + t2 11 p 112 + t4 11 AhP 2) 

< (P _ t2 p t _ h P) ((I - th)2P, P) 

< C(11 p 112 + t2 11 p 112 + t4 
1 

AhP 12). 

Hence, what we need is a preconditioner of the operator (I - t2Ah)2 on Hh. Of 
course, even if B is a preconditioner of I- t2Ah, B-2 does not have to be spectrally 
equivalent to (I- t2Ah)2. Fortunately, it is proved that such a kind of B does exist 
[8]. A multigrid V-cycle with variable numbers of smoothing is one of the good 
choices. Besides, when t is small, (I- t2Ah)2 isg not really ill conditioned. The 
numerical experiments suggest that even a V-cycle with constant 2 smoothing will 
do a very good job. To summarize, we have 

11 U 112 + 11 p 112 + t2 11 p 112 + t4 11 AP H2> (Bh U,U) + (Bp P,P), 

where Bp is a preconditioner of I - t2Ah, such that Bp is a preconditioner of 
(I - t2Ah)2. If B2 is the matrix corresponding to Bp, then the matrix of the 
diagonal preconditioner is 

(B1 0 B 0 B~ J 

7. NUMERICAL EXPERIMENTS 

Numerical experiments are done for different plate thicknesses on the unit square 
Q = [0,11] x [0,1]. First, the domain is divided into 2J x 2J squares of size h x h, 
with h = 2-J. Then, each small square is divided into two triangles by the NW- 
SE diagonal. Continuous piecewise linear elements are used for all the unknowns. 
As is expected, the numerical solution does converge to the exact solution at the 
optimal rate without locking. The standard multigrid method is used to compute 
the solutions of the two elliptic problems. The conjugate gradient method with 
diagonal preconditioning is used to solve (5.13). The hard work is the tuning of the 
preconditioner. 

In general, the condition number of a block diagonally preconditioned multi- 
variable problem depends heavily on the weighting of the diagonal blocks. Even 
though the condition number is proved to be independent of the mesh size h, the 
constants can be large and the iteration can behave very poorly if the subsystems are 
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unbalanced or the parameters of the preconditioner do not match the parameters 
of the original problem. For the Reissner-Mindlin plate model (2.1) 

(7.1) a(~,') + Ait-2 (-Vw, - V_ ) = (g, A), V(H) E HO(Q) x H' (Q) 

we define t and g by 

2 = 
12(1 - -)At-2 12(1 -v)g 

E ' E 
and then consider the equivalent dimensionless problem 

(7.2) a(or,) + tj-2 7-Vw,b - (_ ,u), V(p<, ) E H0(Q) x H' (Q). 

The meaning of a(., ) is clear in the context. Instead of four parameters E, A, v, 
and t, we now need to deal with only two parameters v and t. The parameter ay in 
the form (3.8) needs to be tuned to balance the subsystems corresponding to the 
two equations of the Stokes-like problem. For the rest of this section, we will use 
a(.,-) for a(., .), t for t, and g for g, just to simplify the notation. 

In the diagonal preconditioner ( o B )B, h: H' (Q) Vh iS a multigrid 

V-cycle preconditioner for the operator -A on H' (Q). The number of smoothings 
can be one, but we chose two because we found that the case of two smoothings 
is more efficient in terms of total work. Bp is a multigrid V-cycle preconditioner 
for I - t2Ah on Hh* We also choose two smoothings in practice, although more 
smoothing is needed on the coarse grids to prove that Bp-2 is spectrally equivalent 
to (I - t2 Ah )2. The numerical experiment shows that three smoothings work better 
when h << t. 

Let X be the solution of AX-= F, Xm be the iterates, RItm F - AX, be the 
residual. Then there are 0 < Co < Cl, independent of h, such that 

Co (A(X - XI) X- XI) < (BRM , RI) < Cl (A(X - XI) X -Xm) 1 

and so 
Co (BRm,Rm) (A(X-Xm),X-Xm) Ci (BRm,Rm) 

C, (3RO,RO) - (A(X-Xo),X-Xo) -Co (BROIRO) 
Therefore 

(BRm, RIm) 

is used to stop the iteration. In the conjugate gradient method, (BRm, Rm) is 
computed as part of the iteration, so the error estimator is free of cost. 

To reveal the real error reduction rate and condition number of the precondi- 
tioned system, we choose E = 10-8. It is well known that the error reduction in the 
first few iterations does not reflect the condition number of the system. Too large 
a value of E might produce an unreliable estimate of the condition number. 

Table 1 reports the iteration numbers of the conjugate gradient iterations solv- 
ing (5.13) for mesh size h = 1/8,1/16,1/32,1/64,1/128 and plate thickness t = 
0, 0.001, 0.01, 0.1, 1.0, with v - 0.25, a = 0.36, E = 10-8. The condition number of 
BA can be estimated by 

K(BA) < ((1 + 0)/(1 _ 0))2, 0 Em 

where m is the iteration number. For all the cases in the table, K(BA) E (7.4,26.8). 
The condition numbers are uniformly bounded, although they are larger when 
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TABLE 1. Iteration numbers of the PCG, v = 0.25, a = 0.36, E = 10-8 

h=-3 2-4 2 25 52-6 2-7 
t= 0.000 24 26 30 34 35 
t = 0.001 24 26 30 34 35 
t = 0.010 25 27 28 34 39 
t = 0.100 29 42 41 40 41 
t= 1.000 33 40 43 45 47 

h << t. The reason for this is reflected in the proof of the stability theorem, 
which we use to construct the diagonal preconditioner; the constants change when 
t740. 
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